Comparative study of the active cadmium efflux systems operating at the plasma membrane and tonoplast of cucumber root cells
نویسندگان
چکیده
The strategies developed by plants to avoid the toxicity of cadmium (Cd) and other heavy metals involve active sequestration of metals into the apoplast and vacuoles. The protein systems excluding heavy metals from the cell cytosol localize to the plasma membrane and tonoplast and are energized either by ATP or by the electrochemical gradient generated by H(+)-ATPase or by V-ATPase and pyrophosphatase (PPase), respectively. In this work, a comparative study on the contribution of both the plasma membrane and tonoplast in the active detoxification of plant cells after treatment with Cd was performed. The studies using plants treated and untreated with Cd reveal that both, H(+)-coupled and MgATP-driven efflux of Cd across plasma membranes and tonoplast is markedly stimulated in the presence of Cd in the environment. Previous studies on plasma-membrane localized H(+)-coupled Cd efflux together with the present data demonstrating tonoplast H(+)/Cd(2+) antiport activity suggest that H(+)-coupled secondary transport of Cd displays a lower affinity for Cd when compared with Cd primary pumps driven by MgATP. In addition, it is shown that MgATP-energized Cd efflux across both membranes is significantly enhanced by cysteine, dithiothreitol, and glutathione. These results suggest that Cd is excluded from the cytosol through an energy-dependent system as a free ion as well as a complexed form. Although both membranes contribute in the active exclusion of ionized and complexed Cd from the cytosol, the overall calculation of Cd accumulation in the everted plasma membranes and vacuolar vesicles suggests that the tonoplast and vacuole have a major function in Cd efflux from the cytosol in the roots of cucumber subjected to Cd stress.
منابع مشابه
NO3−/H+ Antiport in the Tonoplast of Cucumber Root Cells Is Stimulated by Nitrate Supply: Evidence for a Reversible Nitrate-Induced Phosphorylation of Vacuolar NO3−/H+ Antiport
Studies in the last few years have shed light on the process of nitrate accumulation within plant cells, achieving molecular identification and partial characterization of the genes and proteins involved in this process. However, contrary to the plasma membrane-localized nitrate transport activities, the kinetics of active nitrate influx into the vacuole and its adaptation to external nitrate a...
متن کاملAlternative splicing confers a dual role in polar auxin transport and drought stress tolerance to the major facilitator superfamily transporter ZIFL1.
Major facilitator superfamily (MFS) transporters constitute a major class of transporter in all organisms. They are prevalent in plants; the Arabidopsis thaliana genome contains over 120 genes predicted to encode MFS transporters. However, relatively few have been characterized, such as nitrate transporters related to NRT1 (Forde, 2000) and ZINC-INDUCED FACILITATOR1 (ZIF1; Haydon and Cobbett, 2...
متن کاملAssessment of the vacuolar Na+/H+ antiporter (NHX1) transcriptional changes in Leptochloa fusca L. in response to salt and cadmium stresses
Sodium/proton exchangers (NHX) are key players in plant responses to salinity and have a central role in establishing ion homeostasis. NHXs can be localized in tonoplast or plasma membranes, where they exchange sodium ions for protons, resulting in the removal of ions from the cytosol into vacuole or extracellular spaces. In the present study, the expression pattern of the gene encoding Na+/H+ ...
متن کاملAssessing the role of root plasma membrane and tonoplast Na+/H+ exchangers in salinity tolerance in wheat: in planta quantification methods.
This work investigates the role of cytosolic Na+ exclusion in roots as a means of salinity tolerance in wheat, and offers in planta methods for the functional assessment of major transporters contributing to this trait. An electrophysiological protocol was developed to quantify the activity of plasma membrane Na+ efflux systems in roots, using the microelectrode ion flux estimation (MIFE) techn...
متن کاملCadmium transport across tonoplast of vesicles from oat roots. Evidence for a Cd2+/H+ antiport activity.
Cadmium accumulates in the vacuole of plant cells, but the mechanism driving its transport across the vacuole membrane is not understood. Here we present evidence for Cd2+ transport via a Cd2+/H+ antiport activity into tonoplast-enriched vesicles isolated from oat roots. Experimentally, accumulation of Cd2+ into vesicles could be driven by delta pH generated by either V-type ATPase or artificia...
متن کامل